Schulungs - Auswahl





SPSS Statistics - Neural Networks kaufen
0

 

Gesamtsumme
inkl. 19 % USt

IBM SPSS Neural Networks bietet nicht lineare Datenmodellierungsprozeduren an, die es Ihnen ermöglichen, komplexere Beziehungen in Ihren Daten offenzulegen.

Wählen Sie aus den Algorithmen, die zur Klassifizierung (kategorische Ergebnisse) und Vorhersage (numerische Ergebnisse) verwendet werden können, um präzisere und effizientere Vorhersagemodelle zu entwickeln, die tiefere Einblicke und eine optimalere Entscheidungsfindung gewähren.

Dies könnte Sie auch interessieren

SPSS Statistics - Standard

SPSS Statistics - Standard

SPSS Statistics - Standard

Elementare Analysefunktionalität für eine breite Vielfalt von Unternehmens- und Forschungsfragen. Mehr Details

Download Preisliste Zum Produkt

Systat

Systat

Systat

Brillante Software zur statistischen Analyse, Bootstrapping Verfahren, Visualisierung mit hochwertigen 2D und 3D... Mehr Details

Download Preisliste Zum Produkt

EViews 14

EViews 14

EViews 14

Im Bereich Ökonometrie ist EViews Ihre erste Wahl! Egal ob lineare Regression, Zeitreihenanalysen mittels ARCH,... Mehr Details

Download Preisliste Zum Produkt

IBM SPSS Statistics - Neural Networks

Find more complex relationships in your data

IBM® SPSS® Neural Networks software offers nonlinear data modeling procedures that enable you to discover more complex relationships in your data. The software lets you set the conditions under which the network learns. You can control the training stopping rules and network architecture, or let the procedure automatically choose the architecture for you.

With SPSS Neural Networks software, you can develop more accurate and effective predictive models.

  • Mine your data for hidden relationships using the Multilayer Perceptron (MLP) or Radial Basis Function (RBF) procedure.
  • Control the process from start to finish by specifying the variables.
  • Combine with other statistical procedures or techniques for greater insight.

Desktop-Systeme

  Windows® Mac® OS X Linux®
Andere Voraussetzungen DVD-Laufwerk
Super VGA-Monitor (800x600) oder Monitor mit höherer Auflösung
Für die Verbindung mit dem SPSS Statistics Base Server, ein Netzwerk Adapter für das TCP/IP Netzwerk Protokoll
Internet Explorer 7, 8,9 oder 10
DVD-Laufwerk
Super VGA-Monitor (800x600) oder Monitor mit höherer Auflösung
Webbrowser: Mozilla® Firefox® 20, 21
DVD-Laufwerk
Super VGA-Monitor (800x600) oder Monitor mit höherer Auflösung
Webbrowser: Mozilla® Firefox® 20, 21
Betriebssystem Windows XP, Vista, 7, 8, 10 (32-/64-Bit) Mac OS X 10.7 (32-/64-Bit), Mac OS X 10.8 (nur 64-Bit!) Debian 6.0 x86-64, Red Hat Enterprise Linux (RHEL) 5 Desktop Editions, Red Hat Enterprise Linux (RHEL) Client 6 x86-64:
  • Linux (64 bit) kernel 2.6.28-238.e15 oder höher
  • FORTRAN version libgfortran.so.3
  • C++ Version libstdc++.so.6.0.10
Minimum CPU Intel®- oder AMD-x86-Prozessor mit 1 GHz oder mehr Intel-Prozessor (32- und 64-Bit) Intel®- oder AMD-x86-Prozessor mit 1 GHz oder mehr  
Min. RAM 1 GB RAM oder mehr empfohlen 1 GB RAM oder mehr empfohlen 1 GB RAM oder mehr empfohlen
Festplattenplatz Minimum 800 MB freier Speicherplatz auf der Festplatte Minimum 800 MB freier Speicherplatz auf der Festplatte Minimum 800 MB freier Speicherplatz auf der Festplatte

Server-Systeme

  SPSS Statistics Server
Andere Voraussetzungen Für Windows-, Solaris-Computer: Netzwerkadapter mit TCP/IP-Netzwerkprotokoll
Für System z-Computer: OSA-Express3 10 Gigabit Ethernet, OSA-Express3 Gigabit Ethernet, OSA-Express3 1000BASE-T Ethernet
Betriebssystem Windows Server 2008 oder 2012 (64-Bit), Red Hat® Enterprise Linux 5 (auf diversen Rechnerarchitekturen; 64-Bit), SUSE Linux Enterprise Server 10 und 11 (auf diversen Rechnerarchitekturen; 64-Bit)

Details entnehmen Sie bitte der Übersicht System Requirements SPSS Statistics Server 22
Minimum CPU  
Min. RAM 4 GB RAM oder mehr werden empfohlen
Festplattenplatz ca. 1 GB für die Installation. Temporär wird die doppelte Menge Speicherplatz benötigt.

Mine your data for hidden relationships

  • Choose either MLP or RBF algorithms to map relationships implied by the data. The MLP procedure can find more complex relationships, while the RBF procedure is faster.
  • Benefit from feed-forward architectures, which move data in only one direction, from the input nodes through the hidden layer or layers of nodes to the output nodes.
  • Take advantage of algorithms that operate on a training set of data and then apply that knowledge to the entire data set and to any new data.

Control the process

  • Specify the dependent variables, which may be scale, categorical or a combination of the two.
  • Adjust each procedure by choosing how to partition the data set, which architecture to use and what computation resources to apply to the analysis.
  • Choose whether to display the results in tables or graphs, save optional temporary variables to the active data set, or export models in XML-based file format to score future data.

Combine with other statistical procedures or techniques

  • Confirm neural network results with traditional statistical techniques using IBM SPSS Statistics Base.
  • Combine with other statistical procedures to gain clearer insight in a number of areas, including market research, database marketing, financial analysis, operational analysis and health care. In market research, for example, you can create customer profiles and discover customer preferences.